CARs vs. BiTE in Acute Lymphoblastic Leukemia: PRO BiTE

Anjali S. Advani, MD

Director, Inpatient Leukemia Unit

Associate Professor, Cleveland Clinic Lerner College of Medicine

Staff, Department of Hematologic Oncology and Blood Disorders

Taussig Cancer Institute, Cleveland Clinic
Patient Case

Mr. W is a 59-year-old gentleman with relapsed/ refractory pre-B ALL who presents for possible clinical trial participation: Phase 1: CVP/ Inotuzumab.

At the time of diagnosis, he received a BFM-based regimen.

Cytogenetics demonstrated t(1;7)

His induction course was complicated by sepsis, a peri-rectal abcess requiring surgery, and 2 “mini-strokes”.

Day 28 bone marrow: morphologic CR— but still +minimal residual disease (MRD).
Case, continued

• Given his deconditioned status, he was sent to rehab.

• Post-remission therapy (PRT) was delayed secondary to his performance status.

• Follow-up bone marrow done after his 1st course of PRT demonstrated relapsed/refractory ALL (CD19+, CD22+).

• Current ECOG: 1

• Physical exam: unremarkable except for a Grade 2 peripheral neuropathy.
Case, contd.

- Mr. W is not a candidate for the clinical trial given his peripheral neuropathy.

- Blinatumomab was just FDA approved around this time—so he was started on treatment with this.
Adult ALL:
Novel Approaches Needed

Overall survival at 3 years for 759 adults enrolled on 5 CALGB trials: 1988-2001

- < 30 y (n = 280)
- 30-59 y (n = 350)
- > 60 y (n = 129)
- Overall (n = 759)

Courtesy of Wendy Stock
Adult ALL

• More than 50% of adults with ALL will relapse.

• At the time of relapse, the only KNOWN cure is allogeneic HSCT (AHSCT).

• However, patients typically need to be in remission to be able to proceed to AHSCT.
Blinatumomab (MT103)® A T Cell-Engaging BiTE Antibody

Adapted from: Nagorsen D et al; Blood 2009; 114: 2723
Safety and Activity of Blinatumomab for Adult Patients with Relapsed or Refractory B-precursor acute lymphoblastic leukaemia: a multi-centre single arm Phase 2 study

- 189 pts (Ph chromosome negative)
- Median age 39 years (range 18-79)
- Prior lines of salvage therapy
 - 0: 20%
 - 1: 41%
 - 2: 22%
 - >2: 17%
- Bone marrow blast count
 - < 50%: 31%

Toxicities

<table>
<thead>
<tr>
<th>Adverse Events (any grade)</th>
<th>Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrexia</td>
<td>60%</td>
</tr>
<tr>
<td>Headache</td>
<td>34%</td>
</tr>
<tr>
<td>Febrile neutropenia*</td>
<td>28%</td>
</tr>
<tr>
<td>Peripheral edema</td>
<td>26%</td>
</tr>
<tr>
<td>Nausea</td>
<td>24%</td>
</tr>
<tr>
<td>Hypokalemia</td>
<td>24%</td>
</tr>
<tr>
<td>Constipation</td>
<td>21%</td>
</tr>
<tr>
<td>Anemia*</td>
<td>20%</td>
</tr>
</tbody>
</table>

*Febrile neutropenia, neutropenia, and anemia: most common Gr 3/4 AEs

**3 pts (2%): Gr 3 cytokine release syndrome

***52% of pts had neurologic events: 76% Gr 1 or 2

Blinatumomab: Responses

- Response rate: 43% CR/ CRi
- 40% of responders went on to alloBMT
- MRD response: 82%
- Median RFS: 5.9 months; OS: 6.1 months
- Only significant predictor of response: bone marrow blast count < 50%
- Very encouraging results in a heavily pre-treated group of patients
- December 2014: Blinatumomab FDA approved for relapsed/ refractory Ph neg ALL

TOWER Study

• Phase 3 trial
• 2:1 randomization
• Randomized pts to Blinatumomab or treatment with 1 of the following regimens:
 --FLAG +/-anthracycline
 --high dose cytarabine based
 --high dose methotrexate based
 --clofarabine based
Best Hematologic Response Within 12 Weeks after Treatment Initiation.

Table 2. Best Hematologic Response Within 12 Weeks after Treatment Initiation.*

<table>
<thead>
<tr>
<th>Response Category</th>
<th>Blinatumomab Group (N = 271)</th>
<th>Chemotherapy Group (N = 134)</th>
<th>Treatment Difference (95% CI)</th>
<th>P Value †</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no.</td>
<td>% (95% CI)</td>
<td>no.</td>
<td>% (95% CI)</td>
</tr>
<tr>
<td>Complete remission with full hematologic recovery</td>
<td>91</td>
<td>33.6 (28.0–39.5)</td>
<td>21</td>
<td>15.7 (10.0–23.0)</td>
</tr>
<tr>
<td>Complete remission with full, partial, or incomplete hematologic recovery</td>
<td>119</td>
<td>43.9 (37.9–50.0)</td>
<td>33</td>
<td>24.6 (17.6–32.8)</td>
</tr>
<tr>
<td>Complete remission with partial hematologic recovery</td>
<td>24</td>
<td>8.9 (5.8–12.9)</td>
<td>6</td>
<td>4.5 (1.7–9.5)</td>
</tr>
<tr>
<td>Complete remission with incomplete hematologic recovery</td>
<td>4</td>
<td>1.5 (0.4–3.7)</td>
<td>6</td>
<td>4.5 (1.7–9.5)</td>
</tr>
</tbody>
</table>

* Data are summarized for all patients who underwent randomization (intention-to-treat population). Complete remission was defined as 5% or less bone marrow blasts and no evidence of disease and was further characterized according to the extent of recovery of peripheral blood counts as follows: complete remission with full recovery (platelet count of >100,000 per microliter and absolute neutrophil count of >1000 per microliter), complete remission with partial recovery (platelet count of >50,000 per microliter and absolute neutrophil count of >500 per microliter), or complete remission with incomplete recovery (platelet count of >100,000 per microliter or absolute neutrophil count of >1000 per microliter).

† Rates were compared with the use of a Cochran–Mantel–Haenszel test, with adjustment for the following stratification factors: age (<35 vs. ≥35 years), previous salvage therapy (yes vs. no), and previous allogeneic stem-cell transplantation (yes vs. no).

Efficacy End Points.

A Overall Survival

Median Overall Survival (mo)
- Blinatumomab: 7.7 (95% CI, 5.6–9.6)
- Chemotherapy: 4.0 (95% CI, 2.9–5.3)

Hazard ratio: 0.71 (95% CI, 0.55–0.93)
P = 0.01

B Overall Survival Censored at Time of Stem-Cell Transplantation

Median Overall Survival (mo)
- Blinatumomab: 6.9 (95% CI, 5.3–8.8)
- Chemotherapy: 3.9 (95% CI, 2.8–4.9)

Hazard ratio: 0.66 (95% CI, 0.50–0.88)
P = 0.004

C Event-free Survival

Hazard ratio: 0.55 (95% CI, 0.43–0.73)
P = 0.001

2017;376:836-847
Generation of 19-28z CAR T Cells

1. Construct a CAR
2. Subclone CAR gene into a vector
3. Transduce and expand patient T cells \textit{ex vivo}

Retroviral vector encoding CD19 CAR cDNA

Genetically modified CD19-targeted T cell

Courtesy of Jae Park
Summary of Clinical Outcomes

Number of Patients, N=27

<table>
<thead>
<tr>
<th></th>
<th>Number of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall CR Rate</td>
<td>24/27 (89%)</td>
</tr>
<tr>
<td>MRD Negative CR Rate</td>
<td>21/24 (88%)</td>
</tr>
<tr>
<td>Median Time to CR (range)</td>
<td>22.5 days (9 – 33)</td>
</tr>
</tbody>
</table>

Median overall survival: 8.5 months (this trial)

Blinatumomab trial: blina arm: 7.7 months

Jae Park, ASH 2014, Abstract 382
CRS & Neurological Toxicities

<table>
<thead>
<tr>
<th>Subgroups</th>
<th>Severe CRS*</th>
<th>Grade 3/4 Neurotoxicity</th>
<th>Grade 5 Toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>5 (18%)</td>
<td>7 (25%)</td>
<td>2 (7%)</td>
</tr>
<tr>
<td>Pre-T cell Disease Burden</td>
<td>5 (33%)</td>
<td>6 (40%)</td>
<td></td>
</tr>
<tr>
<td>Morphologic disease (n=15)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>MRD (n=13)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Requiring vasopressors and/or mechanical ventilation for hypoxia

¶1 patient with ventricular arrhythmia (DNR) and 1 patient had seizure, but unknown cause of death

- No GvHD exacerbation was observed in patients with prior allo-HSCT
- CRS managed with IL-6R inhibitor (3 pts), steroid (2 pts), IL-6R inhibitor+steroid (6 pts)
- Neurological symptoms are reversible, and can occur independent of CRS

Jae Park, ASH 2014, Abstract 382
Cons of CAR T Cells

• Very encouraging response rates. However, most trials in adults preliminary. In ALL—MSK is the main experience to date—so unclear how results will apply on a larger scale in ALL.

• JUNO ALL study in adults closed secondary to neurotoxicity/deaths.

• Toxicity still significant even in MSK trial.

• Unclear of long term effects on the immune system, other complications related to viral integration.
Pros of Blinatumomab

- Larger numbers of patients on an international scale.

- Better long term toxicity data and survival data (data also available in the MRD setting).

- Randomized study showing benefit over standard of care chemotherapy.

- Overall survival not very different from CAR T cells and much fewer toxicities.
Back to our case

- Mr. W achieves a morphologic and cytogenetic remission after 1 cycle of blinatumomab. Molecular testing—MRD by flow—demonstrates evidence of complete molecular remission. He receives 1 more cycle of blinatumomab and then receives a MUD AH SCT.