Translate Graphs of Polynomial Functions

Compare the function with the graph of $f(x) = x^3$.

1.
$$g(x) = x^3 + 4$$

2.
$$f(x) = x^3 - 3$$

3.
$$h(x) = (x-4)^3 + 2$$

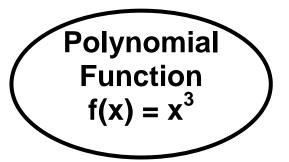
4.
$$f(x) = (x + 2)^3 + 1$$

Compare the function with the graph of $f(x) = x^4$.

1.
$$g(x) = x^4 + 3$$

2.
$$f(x) = (x-1)^4$$

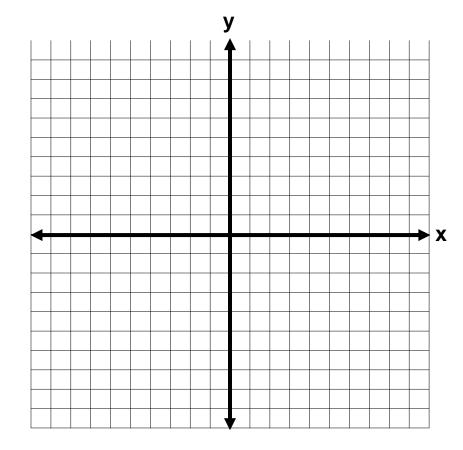
3.
$$h(x) = (x+5)^4 - 2$$


4.
$$f(x) = (x-3)^4 - 3$$

Do you Remember?...

you remember	- I	
x f(x) 2 1 0 -1 -2 Linear Equation:	x f(x) 2 1 0 -1 -2 Absolute Value Equation:	x f(x) 2 1 0 -1 -2 Quadratic Equation:
Domain:	Domain:	Domain:
Range:	Range:	Range:
x f(x) 2 1 0 -1 -2 Cubic Equation:	x f(x) Square Root Equation:	x f(x) Rational Equation:
X f(x) 2 1 0 -1 -2	Square Root Equation:	Rational Equation:
x f(x) 2 1 0 -1 -2 Cubic	Square Root	Rational

Math Instructional Framework


Full Name		
Time Frame	6 weeks - Unit 5	
Unit Name	Polynomials	
Learning Task/Topics/ Themes	Simple Polynomial Translations of f(x) = ax ⁿ	
Standards and Elements	MM3A1 – Students will analyze graphs of polynomial functions of higher degree. a. Graph simple polynomial functions as translations of the function f(x) = ax ⁿ .	
Lesson Essential Questions	How do you graph simple translations of the function $f(x) = ax^n$?	
Activator	Use the graphic organizer, Basic Functions, to review the parent graphs from Math 1 and 2.	
Vocabulary	Translation, Polynomial Function, Cubic, Quartic, Quintic	
Work Session	Guided Practice – Polynomial Functions Translations Graphic Organizer Over Cubics, Quartics, and Quintics Student Independent Practice – Translate Polynomial Functions Worksheet	
Summarizing/Closing/Formative Assessment	Think-Pair-Share Students create a translation of a graph written in function notation. Have students switch papers. Students tell the translation for one another's problem.	

Plot the points and sketch the graph below.

Complete the table		
of values.		
f (x)		

Why is this called a cubic function?

What is the x-intercept?

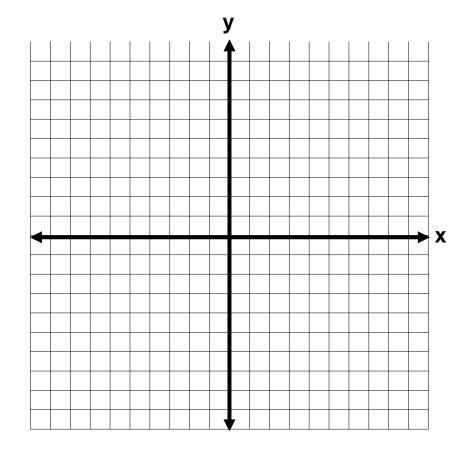
What is the y-intercept?

What is the domain?

What is the range?

How could this graph be shifted up or down?

Families Of Cubic Functions in the Form of $f(x) = x^3 + p$

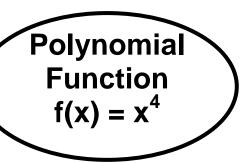

Graph each of the following functions in different colors on the graph at the right.

$$f(x) = x^3 + 4$$

$$f(x) = x^3 - 5$$

$$f(x) = (x - 2)^3$$

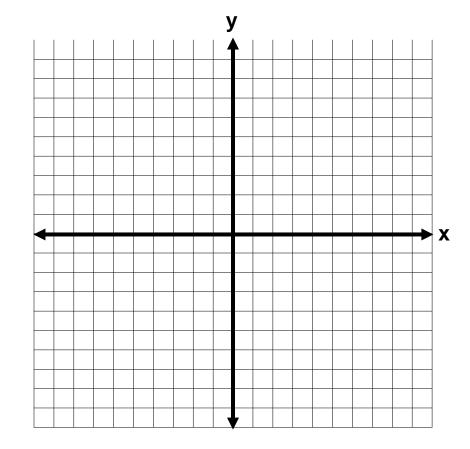
$$f(x) = (x+3)^3$$


How are the graphs alike?

How are the graphs different?

How would the graph of $f(x) = x^3 - 3$ compare to the graph of $f(x) = x^3$?

How would the graph of $f(x) = x^3 + 4$ compare to the graph of $f(x) = x^3$?


How would the graph of $f(x) = (x - 2)^3$ compare to the graph of $f(x) = x^3$?

Plot the points and sketch the graph below.

Complete the table		
of values.		
X	f (x)	
-2		
-1		
0		
1		
2		

Why is this called a quartic function?

What is the x-intercept?

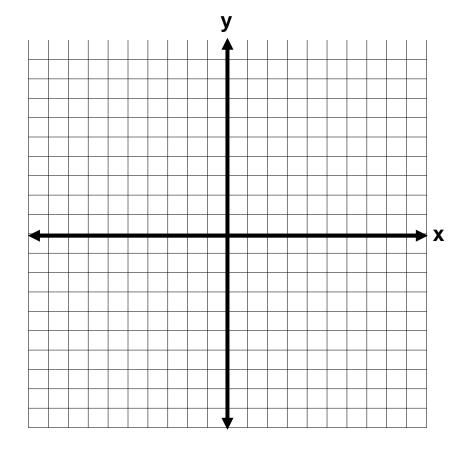
What is the y-intercept?

What is the domain?

What is the range?

How could this graph be shifted up or down?

Families Of Quartic Functions in the Form of $f(x) = x^4 + p$

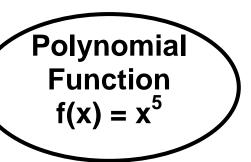

Graph each of the following functions in different colors on the graph at the right.

$$f(x) = x^4 + 3$$

$$f(x) = x^4 - 2$$

$$f(x) = (x - 1)^4$$

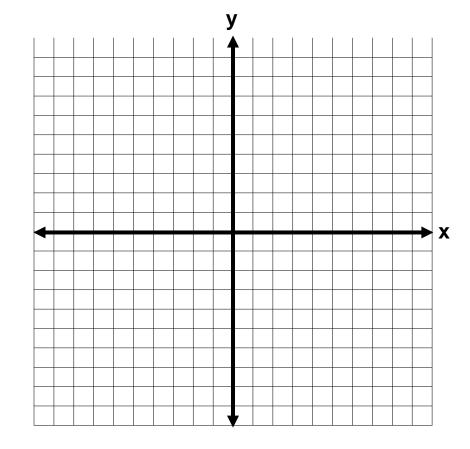
$$f(x) = (x + 2)^4$$


How are the graphs alike?

How are the graphs different?

How would the graph of $f(x) = x^4$ - 2 compare to the graph of $f(x) = x^4$

How would the graph of $f(x) = x^4 + 3$ compare to the graph of $f(x) = x^4$


How would the graph of $f(x) = (x - 5)^4$ compare to the graph of $f(x) = x^4$

Plot the points and sketch the graph below.

Complete the table		
of values.		
X	f (x)	
-2		
-1		
0		
1		
2		

Why is this called a quintic function?

What is the x-intercept?

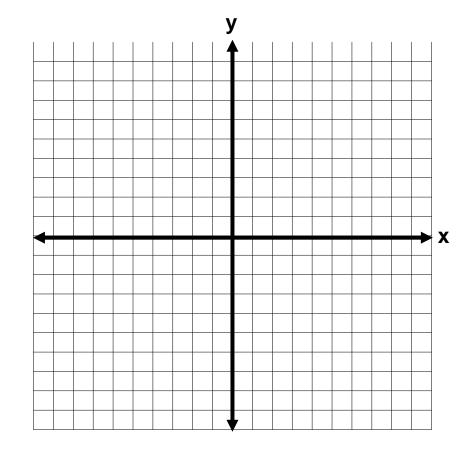
What is the y-intercept?

What is the domain?

What is the range?

How could this graph be shifted up or down?

Families Of Quintic Functions in the Form of $f(x) = x^5 + p$


Graph each of the following functions in different colors on the graph at the right.

$$f(x) = x^5 - 3$$

$$f(x) = x^5 + 2$$

$$f(x) = (x+4)^5$$

$$f(x) = (x - 5)^5$$

How are the graphs alike?

How are the graphs different?

How would the graph of $f(x) = x^5 - 4$ compare to the graph of $f(x) = x^5$?

How would the graph of $f(x) = x^5 + 2$ compare to the graph of $f(x) = x^5$?

How would the graph of $f(x) = (x + 1)^5$ compare to the graph of $f(x) = x^5$?