Venous Thromboembolism Risk and Management in Patients with Hematologic Malignancies

Meredith T. Moorman, PharmD, BCOP, CPP
Clinical Pharmacist, Adult Hematologic Malignancies Clinic
Duke Cancer Center
April 21, 2017
Objectives

• Identify risk factors for venous thromboembolism (VTE) in patients with hematologic malignancies
• Discuss prevention and treatment options for VTE in this population
• Evaluate the role of direct oral anticoagulants (DOACs) in the management of patients with hematologic malignancies
Significance of VTE

• 2nd leading cause of death in patients with malignancy
• Recurrent VTE and bleeding rates are higher in cancer patients, when compared to non-cancer patients
• Associated with 3-fold increase in hospitalizations and higher total healthcare costs

Risk Factors for VTE

• Can generally be divided into 3 broad categories:
 • Intrinsic and extrinsic patient-related factors
 • Cancer-related factors
 • Treatment-related factors
Risk Factors for VTE

• Can generally be divided into 3 broad categories:
 • Intrinsic and extrinsic patient-related factors
 • Advanced age
 • Obesity
 • Pre-chemotherapy thrombocytosis, leukocytosis, hemoglobin < 10 g/dL
 • Anemia may be complicated by use of erythropoietin-stimulating agents
 • History of VTE
 • Hypercoaguable conditions (i.e. pregnancy)
 • Hospitalization
 • Other medical comorbidities
 • Poor performance status
 • Prolonged immobilization
 • Cancer-related factors
 • Treatment-related factors

Risk Factors for VTE

- Can generally be divided into 3 broad categories:
 - Intrinsic and extrinsic patient-related factors
 - Cancer-related factors
 - Presence of malignancy
 - Increases risk 4-7 fold
 - Type of cancer (pancreatic, brain tumors, stomach, kidney, uterine, lung, ovarian, bladder, testicular, lymphoma, acute leukemia, multiple myeloma)
 - Histology (adenocarcinomas > squamous cell tumors)
 - Extent of disease (localized vs. metastatic)
 - Chemotherapy
 - Extrinsic vascular compression (from cancer-associated regional bulky lymphadenopathy)
 - Treatment-related factors

Risk Factors for VTE

• Can generally be divided into 3 broad categories:
 • Intrinsic and extrinsic patient-related factors
 • Cancer-related factors
 • Treatment-related factors
 • Surgery
 • Presence of central venous catheter
 • Administration of chemotherapy
 • Cytotoxic chemotherapy agents
 • Hormone therapy with estrogenic compounds
 • Anti-angiogenic agents
Risk Score Calculator – Khorana Predictive Model for Chemotherapy-Associated VTE

<table>
<thead>
<tr>
<th>Patient Characteristic</th>
<th>Risk Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site of Primary Cancer</td>
<td></td>
</tr>
<tr>
<td>• Very high risk (stomach, pancreas)</td>
<td>2</td>
</tr>
<tr>
<td>• High risk (lung, lymphoma, gynecologic, breast, testicular)</td>
<td>1</td>
</tr>
<tr>
<td>Pre-chemotherapy platelet count ≥ 350 x 10⁹/L</td>
<td>1</td>
</tr>
<tr>
<td>Hemoglobin < 10 g/dL or use of red cell growth factors</td>
<td>1</td>
</tr>
<tr>
<td>Pre-chemotherapy leukocyte count ≥ 11 x 10⁹/L</td>
<td>1</td>
</tr>
<tr>
<td>BMI 35 kg/m² or higher</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Score</th>
<th>Risk Category</th>
<th>Risk of Symptomatic VTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Low</td>
<td>0.8-3%</td>
</tr>
<tr>
<td>1, 2</td>
<td>Intermediate</td>
<td>1.8-8.4%</td>
</tr>
<tr>
<td>3 or higher</td>
<td>High</td>
<td>7.1-41%</td>
</tr>
</tbody>
</table>

Risk Assessment in Multiple Myeloma

<table>
<thead>
<tr>
<th>Risk Factors</th>
<th>Recommended Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual Risk Factors</td>
<td>No risk factor or only one individual/myeloma risk factor:</td>
</tr>
<tr>
<td>• Obesity (BMI ≥ 30 kg/m²)</td>
<td>• Aspirin 81-325 mg once daily</td>
</tr>
<tr>
<td>• Prior VTE</td>
<td>≥ 2 individual/myeloma risk factors:</td>
</tr>
<tr>
<td>• CVAD or pacemaker</td>
<td>• LMWH (enoxaparin 40 mg once daily) OR</td>
</tr>
<tr>
<td>• Associated disease:</td>
<td>• Full dose warfarin (target INR 2-3)</td>
</tr>
<tr>
<td>- Cardiac</td>
<td></td>
</tr>
<tr>
<td>- Chronic renal</td>
<td></td>
</tr>
<tr>
<td>- Diabetes</td>
<td></td>
</tr>
<tr>
<td>- Acute infection</td>
<td></td>
</tr>
<tr>
<td>- Immobilization</td>
<td></td>
</tr>
<tr>
<td>• Surgery:</td>
<td></td>
</tr>
<tr>
<td>- General surgery</td>
<td></td>
</tr>
<tr>
<td>- Any anesthesia</td>
<td></td>
</tr>
<tr>
<td>- Trauma</td>
<td></td>
</tr>
<tr>
<td>• Use of erythropoietin</td>
<td></td>
</tr>
<tr>
<td>• Blood clotting disorders</td>
<td></td>
</tr>
<tr>
<td>Myeloma related risk factors</td>
<td></td>
</tr>
<tr>
<td>• Diagnosis of myeloma, per se</td>
<td></td>
</tr>
<tr>
<td>• Hyperviscosity</td>
<td></td>
</tr>
<tr>
<td>Myeloma therapy</td>
<td></td>
</tr>
<tr>
<td>• Immunomodulating agent in combination with:</td>
<td></td>
</tr>
<tr>
<td>- High dose dexamethasone (≥ 480 mg/month)</td>
<td></td>
</tr>
<tr>
<td>- Doxorubicin</td>
<td></td>
</tr>
<tr>
<td>- Multi-agent chemotherapy</td>
<td></td>
</tr>
<tr>
<td>• LMWH (enoxaparin 40 mg once daily) OR</td>
<td></td>
</tr>
<tr>
<td>• Full dose warfarin (target INR 2-3)</td>
<td></td>
</tr>
</tbody>
</table>

Anticoagulation Contraindications and Risks

Contraindications

- **Absolute:**
 - Recent CNS bleed
 - Presence of intracranial or spinal lesions at high risk of bleeding
 - Major active bleeding (>2 units of blood transfused in 24 hours)

- **Relative:**
 - Chronic, clinically significant bleeding
 - High risk for falls/head trauma
 - Thrombocytopenia
 - Severe platelet dysfunction
 - Underlying hemorrhagic coagulopathy
 - Neuraxial anesthesia/lumbar puncture

Risks

- Bleeding
- Osteoporosis
- Heparin-induced thrombocytopenia
- Drug interactions
- Food interactions
Mechanism of Action of Anticoagulant Agents

Available Agents

<table>
<thead>
<tr>
<th>Generic Name (Brand)</th>
<th>Dosing</th>
<th>DVT Prophylaxis</th>
<th>DVT Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>INJECTABLE AGENTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dalteparin (Fragmin®)</td>
<td>Ppx: 2500-5000 units daily Tx: 200 units/kg daily x 30 days, then 150 units/kg</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Enoxaparin (Lovenox®)</td>
<td>Ppx: 30-40 mg daily-BID Tx: 1 mg/kg BID or 1.5 mg/kg daily</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Fondaparinux (Arixtra)</td>
<td>Ppx: 2.5 mg once daily (≥50kg) Tx: Fixed dosing based on weight</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Unfractionated Heparin</td>
<td>Ppx: 5000 units every 8-12 hours Tx: 80 units/kg IV bolus, then CI 18 units/kg/hr</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ORAL AGENTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apixaban (Eliquis®)</td>
<td>10 mg BID x 7 days, then 5 mg BID</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Dabigatran (Pradaxa®)</td>
<td>150 mg BID (after 5-10 parenteral therapy)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Edoxaban (Savaysa®)</td>
<td>60 mg once daily (after 5-10 parenteral therapy)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Rivaroxaban (Xarelto®)</td>
<td>15 mg BID x 21 days, then 20 mg daily</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Warfarin (Coumadin®)</td>
<td>Individualized dosing</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Recommendations for VTE Prophylaxis

- **Inpatients**
 - All patients without contraindication to therapy should receive VTE prophylaxis
 - Assumption that ambulation not enough to prevent VTE
 - LMWHs, fondaparinux, subcutaneous UFH

- **Outpatients**
 - High risk patients continue to be at risk post-discharge
 - Abdominal or pelvic surgery patients, multiple myeloma patients
 - Risk-benefit assessment in other high risk patients
Treatment of VTE – What Should We Use?
Immediate Treatment of VTE

• Meta-analysis comparing outcomes with UFH, LMWH, and fondaparinux as initial treatment
• LMWH associated with a significant reduction in mortality at 3 months (RR 0.71, 95% CI 0.52-0.98)
• No significant difference in VTE recurrence between LMWH and UFH
• No statistically significant differences between heparin and fondaparinux in mortality, VTE recurrence or bleeding events
• Establishes role of LMWH for acute management (no hospitalization or monitoring required, preferred option for long term therapy)

CANTHANOX trial

- Included 147 adult patients with any cancer and diagnosis of DVT/PE
- Randomized to subcutaneous enoxaparin 1.5 mg/kg daily vs. warfarin (titrated to achieve INR 2-3) given for 3 months
- Outcomes:
 - Recurrent VTE and/or major bleeding: 10.5% vs. 21.1% (p=0.09)
 - 3 month mortality: 11.3 vs 22.7% (p=0.07)
 - Major hemorrhage: 7 vs. 16% (p=0.09)

CLOT trial

- Included 676 adult patients with active cancer with newly diagnosed, symptomatic proximal DVT, PE or both
- Dalteparin alone (200 IU/kg daily x 1 month, 150 IU/kg daily x 5 months) vs. dalteparin 200 IU/kg daily x 5-7 days with warfarin titrated to INR 2-3
- Outcomes:
 - Recurrent DVT/PE during study period: 27 vs. 53 events (HR 0.48, p=0.002)
 - Clinically overt bleeding: 6% vs. 4% (p=0.27)
 - Death: 39% vs. 41% (p=0.53)
- Establishes role of LMWH as chronic therapy in patients with metastatic disease diagnosed with VTE

Summary – Risk of Recurrent VTE with LMWH alone vs. VKA

Summary – Major Bleeding Risk with LMWH alone vs. VKA

<table>
<thead>
<tr>
<th></th>
<th>No patients with event/No. of patients</th>
<th>Relative Risk (65% CI)</th>
<th>Weight</th>
<th>Relative risk (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMWH</td>
<td>Meyer 5/71</td>
<td></td>
<td>22.3%</td>
<td>0.4 (0.13, 1.19)</td>
</tr>
<tr>
<td>VKA</td>
<td>Lee 12/75</td>
<td></td>
<td></td>
<td>1.6 (0.77, 3.36)</td>
</tr>
<tr>
<td></td>
<td>Hull 7/100</td>
<td></td>
<td>22.8%</td>
<td>1 (0.34, 2.96)</td>
</tr>
<tr>
<td></td>
<td>Delitcher 6/67</td>
<td></td>
<td>5.8%</td>
<td>3.25 (0.37, 28.12)</td>
</tr>
<tr>
<td></td>
<td>Pooled Random-effects 37/576</td>
<td></td>
<td>100%</td>
<td>1.06 (0.5, 2.23)</td>
</tr>
</tbody>
</table>
Recommendations for VTE Treatment

• Immediate treatment with LMWH for initial and long-term treatment of cancer-related thrombosis
• VKAs for long-term management is acceptable in LMWH is not an option
• Duration of therapy:
 • Minimum 3 months of therapy for patients with DVT/PE with either LMWH or warfarin
 • LMWH as monotherapy for first 6 months in patients with proximal DVT or PE and for prevention of recurrent VTE in those with advanced or metastatic disease
 • Indefinite therapy should be considered in patients with active cancer or persistent risk factors
But What About the DOACs?

DOAC = direct oral anticoagulant
EINSTEIN trial

- Pooled analysis of EINSTEIN-DVT and EINSTEIN-PE trials, which included 8282 patients
 - Pre-specified subgroup analysis of cancer patients
 - Cancer defined as active cancer at study entry or cancer diagnosed during tx
- Treatment consisted of rivaroxaban 15 mg BID x 21 days, then 20 mg QDay or enoxaparin 1 mg/kg SQ BID followed by warfarin (INR 2-3)
 - Treatment duration 3, 6, or 12 months (determined locally)
- Outcomes:
 - 430 patients with active cancer at baseline (5.2%), 167 diagnosed during study (2%)
 - Symptomatic recurrent VTE:
 - All patients: 2.1 vs. 2.3% (HR 0.89, 95% CI 0.66-1.19, p<0.001 for non-inferiority)
 - Cancer patients: 5.1 vs. 7.1% (HR 0.69, 95% CI 0.36-1.33)
 - Clinically relevant bleeding:
 - All patients: 9.4 vs. 10.0% (HR 0.93, 95% CI 0.81-1.06)
 - Cancer patients: 2.8 vs 5% (HR 0.53, 95% CI 0.23-1.23)

HOKUSAI-VTE trial

• Randomized, double-blind, non-inferiority trial comparing edoxaban with warfarin for long-term treatment of symptomatic proximal DVT and/or PE in 8292 patients
 • Excluded patients with active cancer for whom long-term LMWH tx was anticipated
 • Patients with hx of cancer were eligible if long-term tx was not planned

• Edoxaban 60 mg po once daily vs. warfarin (titrated to INR 2-3)

• Outcomes:
 • 771 cancer patients enrolled (9.3%, 208 with active cancer, 563 with hx)
 • Recurrent symptomatic VTE:
 • Active cancer: 3.7 vs. 7.1% (HR 0.55, 95% CI 0.16-1.85)
 • All cancer patients at study entry: 3.7 vs. 7.1% (HR 0.53, 95% CI 0.28-1.00)
 • Non-cancer patients: 2.8 vs. 2.7% (HR 1.03, 95% CI 0.78-1.36, p=0.004)
 • Major or clinically relevant non-major bleeding
 • Active cancer: 18.3 vs. 25.3% (HR 0.72, 95% CI 0.40-1.30)
 • All cancer patients at study entry: 12.4 vs. 18.8% (HR 0.64, 95% CI 0.45-0.92)
 • Non-cancer patients: 7.7 vs. 9.1% (HR 0.83, 95% CI 0.71-0.97, p=0.022)

RE-COVER and RE-COVER II trials

• Pre-specified subgroup analysis of RE-COVER and RE-COVER II to investigate safety and efficacy of dabigatran vs. warfarin in patients with and without active cancer
 • Active cancer: diagnosis of cancer (other than BCC or SCC of skin) within 5 years before enrollment, any treatment for cancer within 5 years before enrollment, or recurrent/metastatic cancer

• Intervention: Parenteral treatment + warfarin or warfarin + placebo for at least 5 days until INR ≥ 2, followed by warfarin or dabigatran 150 mg po BID

• Outcomes:
 • 5107 total patients, 335 with cancer (6.6%)
 • Recurrent VTE or VTE-related death:
 • Cancer patients: 7.4 vs. 5.8%
 • Non-cancer patients: 2.4 vs 2.7% (HR 1.09, 95% CI 0.77-1.54)
 • Major bleeding events: overall incidence lower with dabigatran (HR 0.60)

AMPLIFY trial

• Randomized, double blind phase III study comparing apixaban with conventional therapy for acute VTE
 • Patients with active cancer and long term tx with LMWH planned were excluded
 • Active cancer = diagnosed or treated within last 6 months
• Apixaban 10 mg BID x 7, then 5 mg BID x 6 months vs. conventional therapy with enoxaparin SQ, followed by warfarin
• Outcomes
 • Cancer patients represent 3.1% of patients randomized (N=5395)
 • Recurrent symptomatic VTE or death: 3.7 vs. 6.4% (RR 0.56, 95% CI 0.13-2.37)
 • Major bleeding: 2.3 vs. 5% (RR 0.45, 95% CI 0.08-2.46)

Summary – Risk of Recurrent VTE with DOACs

Summary – Major Bleeding Risk with DOACs

<table>
<thead>
<tr>
<th>Study</th>
<th>No patients with event/No. of patients</th>
<th>Relative Risk (95% CI)</th>
<th>Weight</th>
<th>Relative risk (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EINSTEIN</td>
<td>DOAC: 6/232, VKA: 8/196</td>
<td></td>
<td>34.8%</td>
<td>0.63 (0.22, 1.79)</td>
</tr>
<tr>
<td>HOKUSAI</td>
<td>DOAC: 5/109, VKA: 3/99</td>
<td></td>
<td>19%</td>
<td>1.51 (0.37, 6.17)</td>
</tr>
<tr>
<td>RECOVER</td>
<td>DOAC: 6/159, VKA: 7/152</td>
<td></td>
<td>32.9%</td>
<td>0.82 (0.28, 2.38)</td>
</tr>
<tr>
<td>AMPLIFY</td>
<td>DOAC: 2/87, VKA: 4/80</td>
<td></td>
<td>13.5%</td>
<td>0.46 (0.09, 2.44)</td>
</tr>
<tr>
<td>Pooled, Random-effects model</td>
<td>DOAC: 19/587, VKA: 22/527</td>
<td></td>
<td>100%</td>
<td>0.78 (0.42, 1.44)</td>
</tr>
</tbody>
</table>

Take Home Points for the DOACs

• All data presented was subgroup analysis, rather than stand alone trial in cancer patients
 • Studies ongoing comparing edoxaban/apixaban/rivaroxaban vs. dalteparin/LMWH in cancer patients
• Definition of cancer highly variable from study to study
• Percentage of cancer patients included in each study small
 • May also be lower risk cancer patient vs. those included in studies with LMWH as treatment arm
• Comparator arm in all studies was VKA therapy, arguably an inferior comparator
Clinical Characteristics of the DOACs

<table>
<thead>
<tr>
<th>Agent</th>
<th>Renal Adjustments</th>
<th>Hepatic Adjustments</th>
<th>Half-Life</th>
<th>Drug Interactions</th>
<th>Administration Instructions</th>
<th>Financial Assistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apixaban (Eliquis®)</td>
<td>Yes, depends on indication</td>
<td>Yes, with severe impairment</td>
<td>~12 hours</td>
<td>PGP and CYP 3A4 substrate</td>
<td>Administer with or without food; may be crushed *grapefruit products may ↑ levels</td>
<td>Copay card and free 30 day trial offer</td>
</tr>
<tr>
<td>Dabigatran (Pradaxa®)</td>
<td>Pts with CrCl ≤ 30 were excluded from trials</td>
<td>None</td>
<td>12-17 hours</td>
<td>PGP substrate</td>
<td>Administer with or without food; do NOT open capsules (can ↑ absorption by 75%); Discard bottle 4 months after opening</td>
<td>Savings card and free 30 day trial offer</td>
</tr>
<tr>
<td>Edoxaban (Savaysa®)</td>
<td>Reduce if CrCl ≤ 50</td>
<td>Avoid in moderate-severe impairment</td>
<td>10-14 hours</td>
<td>PGP substrate</td>
<td>Administer with or without food</td>
<td>Savings card</td>
</tr>
<tr>
<td>Rivaroxaban (Xarelto®)</td>
<td>Yes, depends on indication</td>
<td>Avoid in moderate-severe impairment</td>
<td>5-9 hours, 11-13 in elderly</td>
<td>PGP and CYP 3A4 substrate</td>
<td>Administer doses ≥15 mg/day with food; dose of 10 mg/day may be administered without regard to meals; can be crushed</td>
<td>Copay card and free 30 day trial offer</td>
</tr>
</tbody>
</table>
Conclusions

• Prevention and management of VTE in hematologic malignancy is often a clinically challenging scenario.

• Current data continues to support LMWH as the mainstay of therapy, but newer data with the DOAC agents may change this recommendation in the future.
Venous Thromboembolism Risk and Management in Patients with Hematologic Malignancies

Meredith T. Moorman, PharmD, BCOP, CPP
Clinical Pharmacist, Adult Hematologic Malignancies Clinic
Duke Cancer Center
April 21, 2017